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Table 1. Of  68 centrosymmetric reflexions, the 34 with 
the concentration parameter a (according to non- 
centrosymmetric formulae) larger than 1"0 are printed 

~o, and ¢c are true and calculated phase values. 
'*' labels wrong indications. 

h k ! ~t ~a C a 

10 0 12 185.0 185.2 17.05 
2 0 2 183.0 175.5 8-97 
0 18 4 1.0 5.0 7-55 

11 0 2 180-0 4.5* 5.82 
8 0 12 184.0 184.2 4.53 
0 12 12 6.0 4.4 3.90 
0 6 17 183.0 184.9 3.79 

11 0 4 181.0 185-2 3.54 
0 2 4 4.0 3.5 3.00 
0 4 6 4.0 183.4" 2.99 
0 10 6 358.0 185.0" 2.37 
0 18 2 181.0 185.4 2.23 

10 14 0 8.0 5.3 2.13 
0 14 12 189-0 184.0 1.52 
2 7 0 1"0 3"8 1 "24 
8 1 0 180"0 182.7 1"18 
0 14 3 181"0 2"2* 1"09 
0 16 10 186"0 186"3 15"49 
0 14 2 1 "0 6"9 7.74 
7 0 14 3"0 4.2 6"16 
0 14 4 4.0 4"8 5"45 
6 15 0 1"0 4"8 3"90 
0 16 1 356"0 3"8 3"86 
0 2 3 0"0 1"5 3"71 
6 1 0 I "0 2.7 3.48 
6 0 18 184-0 184"7 2"99 
2 0 4 184"0 182"9 2"50 
8 16 0 0"0 5"1 2.29 
0 14 10 4-0 4.8 2-20 
0 18 0 184-0 171.9 2"11 
0 2 18 181"0 6"0* 1"44 
0 8 16 181 "0 20-8* 1 "20 
8 0 16 2"0 4.8 1"16 
0 2 19 180"0 184.7 1"07 

4. Concluding remarks 

The limits of (3) and (4) may be described as: (a) 
they hold in PI :  in higher-symmetry space groups 
they hold only if restricted phases of type (0, rr) are 
involved; (b) for restricted phases of different type 
the values of x~ and Xo~ have to be modified in 

accordance with space-group symmetry [see equation 
(10) in Giacovazzo (1987) for the generalized value 
of x~]. 

Equations (3) and (4) are formally quite different 
from equivalent formulae working in non-centrosym- 
metrical space groups (Hauptman, 1982; Giacovazzo, 
1983). The question arises whether: (a) information 
contained in centrosymmetric triplets is sufficiently 
large to be useful in practice for protein structure 
determination; (b) non-centrosymmetric formulae 
are sufficiently accurate to be used also for the estima- 
tion of centrosymmetric triplets. 

In order to answer both questions 68 reflexions 
with restricted phase of type (0, 7r) (from ferredoxin 
calculated data) have been estimated according to 
(4) by using 290 centrosymmetric triplets only. The 
same reflexions were also estimated according to non- 
centrosymmetric formulae. The outcome was practi- 
cally identical for both types of formulae and is shown 
in Table 1. This table suggests that information con- 
tained in centrosymmetric triplets in dispersive struc- 
tures is not negligible, and that non-centrosymmetric 
formulae can be used for estimating centrosymmetric 
as well as non-centrosymmetric triplets. Tests on real 
diffraction data have not been attempted; it is easy 
to foresee a reduced efficiency of the formulae accord- 
ing to the average error magnitude in the experimental 
data. 
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Abstract 

The probabilistic procedure described by Main 
[In Crystallographic Computing Techniques (1976), 
edited by F. R. Ahmed, pp. 97-105. Copenhagen: 

0108-7673/88/030294-07503.00 

Munksgaard] has been reconsidered. In polar space 
groups some primitive random variables (atomic 
positions or shift vectors for molecular fragments) 
may be conveniently restricted to regions which are 
smaller than a unit cell. This introduces two new 
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expressions for triplet relationships; furthermore, a 
new type of phase relationship is introduced which 
is not equivalent to invariant and seminvariant 
relationships. 

Symbols and abbreviations 

~h, ~k: phase of the normalized structure factors Eh, 
Ek. 

Rh, Rk, . . .  : moduli of Eh, E k , . . . .  
N: number of atoms in the cell. 
P: order of the space group. 
m: number of molecular fragments (symmetry 

independent) with unknown position and fixed 
orientation. 

n~: number of atoms in the ith molecular fragment. 
q: number of atoms (symmetry independent) whose 

positions are completely unknown. 
C~ = (R~, T~): sth symmetry operator. R~ is its rota- 

tional paqrt, Ts its translational part. 
Y.q(h): P Y~j-1 f}(h) (scattering power of atoms with 

complete~ unknown position). 
q 

~3q (h,, h2, ha): P ~ £(h~)£(h2)f/(h3). 
j = l  

eh: Wilson's factor responsible for the enhancement 
or depression of the intensity of certain subsets of 
reflexions due to particular symmetry elements. 

1. Introduction 

Orientation search methods in Patterson space 
(Braun, Hornstra & Leenhouts, 1969; Crowther, 1972; 
Nordman & Schilling, 1970) or trials by direct 
methods often provide the orientation of a molecular 
fragment with respect to the crystal axes. The position 
of the fragment with respect to the symmetry elements 
of the space group is usually achieved by: (a) transla- 
tion functions in the vector space (Braun, Hornstra 
& Leenhouts, 1969; Huber, 1965; Nordman & 
Nakatsu, 1963) or in the reciprocal space (Tollin, 
1966; Crowther & Blow, 1967; Karle, 1972; Langs, 
1975; Harada, Lifchitz, Berthou & Jolles, 1981); or 
(b) special direct-methods procedures. Among these 
it is worth noting: (bl)  a modified tangent formula 
(Karle, 1968) is used to recycle in P1 phases derived 
from the known fragment; (b2) reflection data are 
expanded in the space group P1 (Doesburg & Beur- 
skens, 1983; Bruins Slot & Beurskens, 1984) and 
coefficients for Fourier synthesis are obtained by 
direct methods on difference structure factors. The 
position of the fragment relative to symmetry ele- 
ments is deduced from the maximum of a suitable 
translation function; (b3) the correctly oriented but 
randomly positioned atomic groups are introduced 
as prior information in the probabilistic approach 
aimed at estimating triplet invariant phases (Main, 

1976). The present paper is closely related to the last 
remarkable procedure: Main's approach will be 
reconsidered and new results will be derived. 

The application of translation search techniques is 
rather simplified if restrictions (in accordance with 
space-group symmetry) are imposed on the admis- 
sible shifts. For example, shifts which leave invariant 
the algebraic form of the symmetry operators are 
superfluous: thus, thanks to the indeterminacy in 
choice of origin, the coordinates of the molecular 
centre of a fragment in P2 may be arbitrarily restricted 
to 

0---x<½, y = 0 ,  0 - z < ½ .  

According to Hirshfeld (1968), for a convenient 
use of translation functions in vector space Cheshire 
groups and their unit cells have to be considered: in 
particular, Cheshire groups that derive from polar 
space groups have unit cells with one or more axes 
of vanishing length. 

So far the above considerations have had no 
counterpart in the direct-methods techniques (b). 
Indeed, primitive random variables, according to 
their definitions, were always allowed to vary uni- 
formly over the entire unit cell of the space group or 
over reciprocal space. We shall show here that impos- 
ing restrictions on the primitive random variables 
generates in polar space groups a new class of phase 
relationships which are not derivable from estimates 
of structure invariants or seminvariants. Such phase 
relationships will be studied by means of joint proba- 
bility distribution methods. 

2. Normalization of structure factors 

(a) Let us divide the crystal structure into two 
parts: the first includes m molecular fragments with 
known orientation (and their symmetry equivalents), 
the second part comprises the atoms whose positions 
are completely unknown. Then the structure factor 
may be written down as 

m 

Fh = ~ g, (h) + Fqh = Fph + Fqh ( 1 ) 
i = I  

where 

n, P 

g~(h)= ~ f/(h) ~ exp (2~rihC~rj), 
j = l  s = l  

q P 

Fqh = ~ fj(h) ~ exp (2~rihCsrj). 
j = l  s = l  

According to the stated postulates one may also write 

n i P 

gi(h) = ~ f/(h) ~ exp [2~rihCs(uj +'ri)] 
j = l  s = l  

where the uj's are the trial atomic positions for the 
ith fragment and ~'i is the shift to be applied to that 
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fragment in order to translate atoms to the correct 
positions 

where 

uj+'ri,  f o r j = l , . . . , n i .  

A more useful form of g~(h) is 

P 

g,(h)= • g,~(h) exp (2~ihR;r,), (2) 
s = l  

?1 i 

gis(h) = )-'. f/(h) exp (21rihCsuj). (3) 
j = l  

Factors gis(h) do not depend on ,r~ and may be calcu- 
lated from prior information for any i and s. Thus 
the primitive random variables in our probabilistic 
approach are the m shifts x~ and q atomic positions 
rj. Without loss of generality, each primitive random 
variable will be considered statistically independent 
of the others. 

From (1), 

m 

(]Fh2)= ~ (g~(h)gk(-h))+ehY, q(h) 
i,k=l 

= ~ (g,(h) 2)+ eh~q(h) 
i=1  

: ~ ~ (gi,,(h)gi~2(-h) 
i=1  s1,$2= 1 

xexp[2~ih(R~ -R~2),ri])+ehY~q(h). (4) 

The numerical value of eh differs from unity only 
when, for some s~ # s2, 

h(R~,- R~2)=0. (5) 

It is easy to show that 

(1 phi2)= eh ~ I g,~(h) 12+y~q(h) . (6) 
i l s = l  

The factor eh is not explicitly mentioned by Main 
(1976) in his equation (6). 

(b) So far the m primitive random variables a'i as 
well as the q atomic positional variables ri have been 
assumed to be uniformly distributed over the unit 
cell. Such an assumption may be considered 
unfavourable in space groups for which the allowed 
shifts of origin, consistent with the chosen algebraic 
form for the symmetry operators C~, are arbitrary 
displacements along any polar axes. Owing to the 
indeterminacy in the choice of origin, one of the shifts 
x~ may be restricted to a region that is smaller than 
the unit cell. As examples of different dimensionality 
we mention: (a) in P2 we are free to specify the 
origin along the diad axis by restricting a'l into the 
family of vectors of type [x 0 z]; (b) in Pm the origin 
may be fixed by restricting "rl to the class of vectors 

[0 y 0]; (c) in P1 71 may be restricted to the vector 
[0 0 0]. From now on {'tl} will denote the family of 
restricted vectors ,tl for a given space group. Once 
we have restricted xl, no other restriction can be 
assigned to the other a'i's, which may be assumed to 
be uniformly distributed over the unit cell. 

In a polar space group let h satisfy 

h'rl = 0; (7) 

then, for every s, it will also be true that hR~'tl = 0. 
Thus, according to (2), 

P 

g~(h)= ~ gt~(h) 
s = l  

is independent of "rl, so that 

/ 1 ([Fhl2)=lg'(h)12+eh ,~2s:~ ~ [ g ' ~ ( h ) 1 2 + E q ( h )  " (8)  

In P2 and Pm the reflexions for which (7) is satisfied 
are 0k0 and hOl respectively; in P1 every reflexion 
satisfies (7). 

The use of (8) in polar space groups rather than 
(6) is immediately understood in P1, where a 
molecular fragment with known orientation may be 
considered as a set of correctly positioned atoms. 
Thus Igl(h)[ 2 in (8) plays the same role a s  [ Fp.h[ 2 in 
the normalization process when a molecular fragment 
is correctly located [see equation (2) of Giacovazzo 
(1983)]. Similar considerations can be applied in 
polar space groups with symmetry higher than P1, 
but only for subsets of reflexions satisfying (7). 

(c) A normalized structure amplitude Eh is defined 
by 

[ E h [  2 ---- AIh/(I F h  12), (9) 

where Ih is the observed intensity reduced to an 
absolute scale by factor A, and (I Fh 12) is given by (6) 
or (8) according to the circumstances. 

3. The conditional distribution P(q~hlRh) 
in polar space groups 

In any polar space group a family of reflexions can 
always be found whose phases can be estimated from 
diffraction magnitudes 0nly. For example: (a) In P1 
one atom may be arbitrarily located on the origin: 
then all the phases may be estimated via, for instance, 
Sim's (1959) distribution. Their expected values will 
be 2~- for any h. (b) In P2 phases q~0k0 do not depend 
on (x, z) atomic coordinates: their values may be 
estimated by arbitrarily fixing one y atomic coordi- 
nate. (c) In Pm the phases q~ho~ do not depend on y 
coordinates, and may be estimated by arbitrarily 
fixing one pair of atomic coordinates (x, z). 

In the absence of any prior structural information 
the above considerations are of limited use in practice, 
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unless some few heavy atoms are in the structure. By 
contrast they are of great interest if the orientation 
of at least one molecular fragments is known. The 
probabilistic background is the following: for h 
satisfying (7) the conditional probability distribution 
of ~0h may be calculated on the assumption that ,r~ is 
a restricted random vector (according to §2) while 
"ri, for i = 2 , . . . ,  m, and the q positional vectors rj are 
the primitive random variables, randomly distributed 
over the unit cell. Then 

P(~Ohlgh)=[E'a'Io(Gh)] -l exp[Gh COS(~0h--~01)], (10) 

where ~0h and ~ot are the phases of Fh and g~(b) 
respectively, 

Gh = 2RhRlh/ bh, 

R l h =  [ g~(h)1/(1Fh[2) 1/2, 

bh= ~,, Ig,s(b)l:'+Eq(h /(IP,,I% 
i s=l  

and (] F,] 2) is given by (8). 
If m = 1 and q --> 0 then Gh--> c~ as expected. If m = 1 

(only one correctly oriented molecular fragment) (10) 
reduces to the Sim (1959) distribution in the algebraic 
form proposed by Giacovazzo (1983). However, while 
Sim's distribution holds whatever h may be (provided 
some atoms are correctly located), our distribution 
(10) may only be applied in polar space groups and 
for h satisfying (7). Otherwise P ( q ' h )  ----" 1/(2zr). Even 
if formally interesting, distribution (10) will be of 
limited use in practice unless phase information can- 
not be extended to other reflexions by means of phase 
relationships holding under the same hypotheses 
stated for (10). Such new phase relationships are 
described below. 

4. The joint probability distribution of pairs 
of reflexions in polar space groups 

In a polar space group let h~ and h2 be a pair of 
vectors both orthogonal to {'r~}; then 

(Fh, Fh2)= gl(h~)gl(h2) 

and also 

( E h t E h  2) = g l ( h l ) g l ( h 2 ) / [  (] Fh, 12)(I Fh212)] l/2. 

Thus an estimate for ~0h, + ~0h~ is certainly derivable 
from the conditional distribution P(~0h,+~0h~]Rh,, 
Rh2); however it does not significantly add to the 
phase information obtainable from the separate 
application of (10) to Eh, and Eh2 respectively. 

Assume now, for the same polar space group, that 
b~ and h2 are both vectors which are not orthogonal 
to {'rt} but which satisfy the condition 

(h, + h2)x, =0.  (11) 

Then the mean value of Fh, Fh2 is given by 

(Fhl Fh2) = (gl(hl)gl(h2)) 
P 

= ~.. (g~s,(h~)glsE(h2) 
SI,$2 = 1 

x exp[2~ri(hlRs, + h2Rs2)'rl] ) . (12) 

If condition (11) is verified, then (13) holds too for 
any s: 

(hi + h2)Rs'rl = 0, (13) 

and (12) becomes 

P 
(Fh,Fh2) = ~ g~s(hl)gts(h2). (14) 

s=l  

Equation (14) shows us that 02 = (~0h,+~0h2) can be 
estimated in polar space groups provided (11) is 
verified. Examples of such pairs are: (a) in P1 every 
pair (~0h, + ~0h2); (b) in P2 every pair (~0h, + ~t)h2 ) for 
which h l + b E = 0 k 0 ;  (c) in Pm every pair (~0h,+~0h~) 
for which h~ + h 2 = hOl. 

The joint probability distribution P(~0h,, ~0h~, 
Rh,, Rh~) is derived in the Appendix [see (AS)], from 
which the conditional distribution of 02 may be 
obtained: 

P( 02[ R h t R h 2  ) ----- [2 7rlo(J32) ] -1  exp[/32 cos( 02 - 82)], 

(15) 

where I0 is the modified Bessel function of order zero, 
and 

/32 = 2Rh, Rh2d2/ (1 - d2), 
P 

~ = l  [g~,(hl)g~s(h2)] 
d2 exp(i82) - 

[<l Fh, 12><1Fh~12)] ~/2 ' 

and 82 is the phase of d 2. 
Equation (15) allows phase extension to all 

measured reflexions. It may be observed that: (a) 
atoms with unknown positions do not give any infor- 
mation on the expected value of 02, but they help to 
define the variance of the phase relationship through 
the mean values ([ Fh l2 ) ;  (b) unreliable estimates are 
expected for too large ratios ~ ' . /~  ~,; (c) while triplet- 
invariant phases are expected t~ lie'near 2zr (Cochran, 
1955), 82 values uniformly span (in a statistical sense) 
the interval (0, 2zr). Their actual values, for a given 
pair (h~, hE), depend on the orientation of the first 
molecular fragment. 

5. The joint probability distribution of n-tuples 
of reflexions in polar space groups 

In a polar space group let hi, h 2 ,  • • • ,  h,, be an n-tuple 
of vectors none of which is orthogonal to {'rl}; they 
satisfy the condition 

(hi + h2+. • • + hn)'rl = O. 
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The average value 

(Fh, Fh=... Fh.) = ~ g,~(h~)g,~(h2).., g, ,(h,)  (16) 
s = l  

is then a non-vanishing quantity. Thus the conditional 
distribution of 0,, = Ch, + Ch, +.  • • + Ch. given 
Rh,, Rh~,. . . ,  Rh., may be calculated, in accordance 
with § 4, as 

P( O,, I Fh,, Rh~, . . . , Rh.) 

"- [2trio(/3,)]-' exp[/3, cos(0,-- a,)l  (17) 

where 

= ft, 2RhtRh2... Rh,,d,,/(1- 
P 

Y~ g~(h,)g~s(h2).., g~(h,,) 
$=1 

d, exp(iS,) - [(I Fh, 12><1Fh,12>... <1Fh. 12)]'/2" 

It may be observed that (a) (17) [as well as (15)] is 
a phase relationship of order 1/N°; its reliability does 
not depend on the structural complexity, but approxi- 
mately on the ratio n J N ;  (b)the values 8, uniformly 
span (in a statistical sense) the interval (0, 2rr); (c) 
/3, is a decreasing function of n (in an average sense). 
Thus relationships such as 0. -'- a, are expected to be 
more reliable for small than for large n; (d) no phase 
information arises from molecular fragments with 
i>  1. Thus (17) is expected to be more effective when 
m = l .  

6. Conditional probability distribution of triplet 
invariants in non-polar space groups 

Let h,, h2, h3 satisfy the condition 

h, + h2+ h3 = 0. 

In non-polar space groups the average value 
(Fh,Fh2Fh3) may be calculated according to 

( Fh~Fh2Fh3) - ~ (gi(h,)gi(h2)gi(h3)) + ( FqhtFqh2Fqh3) 
i=1  

-- ~ ~. (gist(h,)gis2(h2)gis3(h3) 
i = 1  Sl,S2,S3=l 

x exp[2rri(h,Rs~ + h2R~2 + h3Rs3).r~]) 
q 

+ ~'. fj(h,)/j(h2)f:(h3) 
j = ,  

×(s,,s2~s3=, exp[27ri(hlcs'+h2Cs2 

+ h3Cs3)rj]) • 

It is not difficult to show that 

(Fh'Fh2Fh3) = w(h~' h2' h3){,~l= ~=, ~" g,s(h,)g~s(h2)g~.(h3) 

+ Y~3q (h,, h2, h3)} (18) 

where w(h,, h2, h3) is a weight factor which depends 
on h~, h2, h3 and on the space group (Giacovazzo, 
1974). The conditional probability distribution of 
(g)3 = (4)h, -~ ~t)h 2 -~- (~)h 3 is given by 

P(@3)=[2rrlo(a3)] - '  exp[a3cos(@3-g,3)], (19) 

where 

a3 exp(i~b3) = 2Rh, Rh2Rh3w(h,, h2, h3) 

X [ i=, ~ s=' ~ gis(hl)gi~(h2)gis(h3) 

+ Y~3q (h,, h2, h3) J 

x [(I Fh, 12)(I Sh212)(I Fh, 12)1-'/2; 

( IF h,[ 2) is defined according to (6). Equation (19) 
reduces to Main's result when w(h , ,h2 ,h3)=l .  
Equation (19) may be compared with (17) by observ- 
ing that: (a) (19) is a phase relationship of order 
N-1/2: thus its reliability depends on the structural 
complexity; (b) (19) is unreliable for large ratios 
Y.JY~,; (c) all p fragments with known orientation 
cc~ntri'bute to estimated ~3; (d) a non-vanishing real 
contribution [Y~3q(h~, h2, h3)] arises from atoms with 
unknown position. Thus q3 values are expected to be 
more crowded around 2rr than around rr. 

7. The joint probability distribution of triplet 
invariants in polar space groups 

Let h~, h2, h3 satisfy the condition h, + h2 + h3 = O. In 
polar space groups 

( Fh, Fh2 Fh) 

= g,(h,)g,(h2)&(h3) 

+ ~ (g,(h,)g,(h2)g,(h3))+(Fqh, Fqh=Fqh,) 
i=2 
P 

= Y. g, s, (h,) g, s=(h2)g,,,(h3) 
SI,$2,$3 = l 

x (exp[2-ri(h,Rs, + h2Rs= + h3R~3)% ]) 

+ w(h,, h2, h3){,=2 ~ ~=, ~" gi,(h,)gi~(h2)gi~(h3) 

Y'3q (h,, h2, h3)}. (20) + 

It is not difficult to show that (19) holds in polar 
space groups too without significant modifications. 
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If ha and h2 and h3 are normal to {'ra} then 

( Fh, Fh~ Fh3) 

= ga(ha)g,(h2)ga(h3) 

+ w(h,, h2, h3 g,$(ha)gis(h2)gi,(h3) 
i =  s = l  

+ E3q (ha, h2, h3) }. 

The conditional distribution of (~3 given Rh,, Rh~, 
Rh~ may again be approximated by (19) provided that 

% exp(iqs3) = 2Rh,Rh~Rh~[(I Fh, I:)( I Fh~l~)( I Fh,12)] -'/2 

× { g,(h,)ga(h2)ga(h3) + w(h,, h2, h3) 

X [,=2 ~ $=a ~ gi$(ha)gi,(h2)gi$(h3) 

+ E3q (hi, h2, h3)] 1. 

( iF  h, 12) is defined according to (8). 
It is easily seen that the estimation of q'3, for 

reflexions ha, h2, h3 all orthogonal to {'r~}, is not 
equivalent to that available after separate application 
of (10) to reflexions ha, h2, h3. These highly informa- 
tive triplets can play an important role in practical 
procedures if their number (depending on the point- 
group symmetry) is sufficiently large. 

A P P E N D I X  

Let h~ and h2 be two symmetry-independent vectors 
which are not orthogonal to the family of permitted 
"rt vectors and satisfy the condition (ha+h2)'ra =0. 
Denote by A, = Ah., B, = Bh. the real and imaginary 
components of Eh., and by [a~(h), flih] and [ai,(h), 
/3~(h)] the real and imaginary components of gi(h) 
and gis(h) respectively. 

The characteristic function of the distribution 
P(A~, A2, B~, B2) is given by 

C(ui, u2, vl, v2) = (exp i(uaAa + u2A2+ v~Ba + v2B2)), 
(A1) 

where ui and vi are carrying variables associated with 
Ai and Bi respectively. The first moments of (A1) are 

(Ai) = (Bi) = 0 for i = 1, 2, 

(A2) = (B2) =½ for i=  1, 2, 

m 

(AaA2) = ~ (ai(ha)ai(h2)) 
i = a  

= (al(ha)~a(h2)) 

=[(IF,,,12)(IF,,,I2)] -a/2 ~. f:,(ha)fh(h2) 
J l ,  J2 = a 

P 

x E (cos[27rhaC:.(us,+a',)] 
S!,$2 = a 

X cos[2"n'h2Cs2(uj2 +'ri)]), 

where ( iF  h, 12) is given by (6). Non-vanishing contri- 
butions to the average are obtained only when C~, = 
C~ 2 = C~" thus 

(AaA2) = ½[<1 Fh, I~)<1 fh: 12)3 -a/2 
n I 

× X fj,(hi)fj2(h2) 
J l , J 2  = | 

P 

x E cos[2cr(hlC:ui, +h2Csuh)] 
s = a  

= ½[(I fh, I:)(I fh212)] -a/2 

x ~ [ ~ a  gas(ha)g,s(h2)] =½da (A2) 

where ~ stands for 'real part of'. 
In a similar way the following relations are 

obtained: 

(AiBi) = 0 for i = 1, 2, 

(BaB2> = -(A~A2>, 

(AaB2)=(A2Ba) 

= ½[(I fn, I~)(I Fh212)]-1/2: E=a g,,(ha )ga:(h2) 

=½d2, (A3) 

where ~¢ stands for 'imaginary part of'. 
The Fourier transform of C(ua, u2, va, v2) gives 

P(AI, A2, Ba, B2) 

= [ 1 - ( a~  + d2 ~) ] - , / 2  -2 

x exp{- [1 - ( d  2 + d22)]-a[A~ + B~ + A2: + B~ 

- 2da(AaA2- BaB:)-  2d:(A~B2 + A:B,)]}. 
(A4) 

Non-negativity of the term 1-(d2+d22) is always 
(also in the most critical case in which p = 1 and 
q = 0) ensured by the Schwarz inequality 

g~s(ha)gls(h2) <- Y. Ig,,(ha)l 2 Y. Igas(h2) 
s = a  s = a  s = a  

A change of notation according to 

Ai = Ri cos ~Pi, Bi = Ri sin ~Pi, 

da = d cos 6, d2 = d sin 6 
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gives 

P( R, ,  R2, q~,, ~o2) = { RI R2/[ ~.2( 1 - d 2) ,/2]} 

x exp{-(1 - d2)-l[ R# + R~ 

-2dRi  R~ cos(qh + q~2 - 6)]}. 

(AS) 
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Abstract 

The capabilities of several different methods to deter- 
mine the correct translation of a model for the 
application of the molecular replacement method of 
structure determination to multidomain proteins have 
been analyzed. The structure of the Fab fragment 
of the autoimmune anti-poly(dT)-specific antibody 
HED10 was determined using molecular replacement 
and provides an example for comparing different 
methods of determining the correct translation of the 
model and for evaluating the importance of the pa- 
rameters used. Expansion to space group P1 and 
phasing with a correctly oriented randomly posi- 
tioned model was found to be superior to either the 
Crowther-Blow translation function [Crowther & 
Blow (1967). Acta Cryst. 23, 544-548] or a brute-force 
search when only a small part of the molecule was 
used as a model. 

* Present address: Biotechnology Research Institute, National 
Research Council of Canada, Montreal, Quebec H4P 2R2, Canada. 

0108-7673/88/030300-09503.00 

Introduction 

In a previous paper (Cygler & Anderson, 1988) we 
have discussed the application of the rotation func- 
tion (RF) to determine the orientation of fragments 
of a multidomain protein in a crystal. As an example 
of such a protein we have used the anti-poly(dT) 
immunoglobulin Fab fragment HED10 (Cygler, 
Boodhoo, Lee & Anderson, 1987). The Fab fragment 
is composed of two relatively rigid domains, the vari- 
able (V) and constant (C) domains, connected by two 
short polypeptide links that provide flexibility of the 
domain arrangement in the intact molecule (Amzel 
& Poljak, 1979; Table 1 of Cygler & Anderson, 1988). 
In the case of the HEDI0 Fab fragment the RF 
solutions have been obtained for V and C domains 
separately. Here we would like to present the various 
methods that we have applied to determine the posi- 
tion of these fragments in the unit cell, compare the 
effectiveness of these approaches and investigate what 
is the minimum size of the fragment that can be 
successfully used for such a purpose. 
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